Category: Narrow Web

  • The Environmental Impact of Doctor Blades

    The Environmental Impact of Doctor Blades

    Generally, printers choose plastic or steel doctor blades according to their graphic requirements (or maybe blade life or safety).  But, all else being equal, choosing the eco-friendlier material can help you reduce your facility’s carbon footprint.

    This infographic compares the environmental impact of the two most common doctor blade materials: steel and plastic. For printers looking for innovative ways to reduce their carbon footprint, this infographic may help you better understand the impact your choice in doctor blade could have on the planet. Take a look and complete the form to download the PDF.

    environmental impact doctor blades
  • Doctor Blade Installation

    Doctor Blade Installation

    Back to the basics with this doctor blade installation and best practice infographic, created by Flexo Concepts. This infographic is a simple 3-step guide to proper TruPoint doctor blade installation in a chambered ink system. We also offer helpful insight on the ideal blade orientation and blade pressure to prolong doctor blade life and ensure effective ink metering.

    Complete the form to download this infographic – with this download, you will also have an option at the bottom of the graphic to print the installation guide on standard letter size or poster size paper. This graphic is a great resource to print and post by your press operators to facilitate accurate doctor blade installations.

    3 Keys to Success Doctor Blade Installation Guide
  • Doctor Blade Quality through Tight Manufacturing Control

    Doctor Blade Quality through Tight Manufacturing Control

    From the moment raw material enters our building, Flexo Concepts® measures, analyzes and controls every step of the process of turning the polymer stock into high-precision, performance doctor blades.

    Our Doctor Blade Innovation Lab is where ideas are born and developed by our R&D department. But it is our manufacturing folks who are responsible for bringing the concepts to life on the production line.

    Quality control is a core value of our manufacturing team. Being able to execute blade fabrication day after day with high precision and repeatability is critical to our customers’ success. Printers have to be able to trust that every shipment of our TruPoint® doctor blades will deliver consistent performance – every time, in every application.

    Tight tolerances and high dimensional standards

    We establish and strictly maintain tight tolerances on all our cutting, beveling and finishing machines and set high dimensional standards for our doctor blades. To make sure our products meet these requirements, Flexo Concepts’ quality assurance team uses certain measurement techniques and analytical tools. Among them is statistical process control, or SPC, a method for managing and monitoring a process using data analysis.

    10-Point inspection

    We also apply a 10-point inspection, where blade material and tip table dimensions are measured in real time at various points in the manufacturing cycle. We certify:

        • Material thickness
        • Material width
        • Material cupping
        • Material camber (deviation from a straight edge)
        • Tip table height
        • Tip table thickness
        • Tip table width
        • Tip table length
        • Tip table depth
        • RA value (surface roughness)

    Our engineers plot their measurements on a graph to see if they fall within pre-set tolerance limits. If there is a variance, the process is tightened up, and any deficient product is thrown away. This rigorous inspection system cuts down on variability in the manufacturing process and protects against blade irregularities.

    Track and trace

    To bolster our quality program, we track and trace every aspect of production: from raw material, to operator, to machine, to boxed shipment. If there is an issue down the line, our staff is able to easily go back and pinpoint the problem and correct it right away.

    Flexo Concepts wants to help its customers be the most efficient organizations in their industry, and that starts with delivering products that they can count on. It’s important to us that our doctor blades increase the performance, quality and output of the printing press, its operator and the company as a whole. By putting systems in place to guarantee the consistent production of superior doctor blades, we make sure that our customers get exactly what they expect so their customers get exactly what they expect.

  • New, Improved MicroTip®

    New, Improved MicroTip®

    Since Flexo Concepts launched TruPoint Orange® with a MicroTip four years ago, it has been an overwhelming success in tag and label plants. Printers around the world have embraced the blade’s capabilities with enthusiasm. OEMs have endorsed Orange and are shipping the blade with new press installations, and industry co-suppliers have co-marketed the blade at trade events to demonstrate its unique benefits.

    But despite the success, we haven’t stopped working to improve our revolutionary blade innovation.

    By keeping our “finger on the pulse” of the industry, we continue to learn what issues today’s printers are facing. Using advanced equipment, our R&D folks experiment with blade materials and tips in our Doctor Blade Innovation Lab to come up with solutions, and our engineers deliver concepts that simplify life in the pressroom.

    MicroTipFlexo Concepts has expanded its range of blade thickness and MicroTip combinations on its Orange blade so printers can customize blades for their specific applications. Options range from material and tip duos that extend blade life in most process work to more robust alternatives for white decks and coarse anilox rolls.

    Recently, our engineers modified the MicroTip design to further improve metering and blade life. A minor enhancement to the geometry of the tip doubles its stiffness at the contact point with the anilox roll. This refinement fortifies the strength of the blade and bolsters its impact resistance. The “new and improved” MicroTip delivers a cleaner wipe and lasts longer.

    Our culture of continuous improvement also extends to manufacturing. Investing in advanced equipment allows us to achieve better precision and tighter tolerances in our blade production. In response to the industry’s struggle with start-up issues, we have improved finishing techniques to produce a smoother finish on the MicroTip. As a result, the blade requires no wear-in period and eliminates start-up lines.

    At Flexo Concepts, we like to go above and beyond in what we do. Therefore, even after perfecting a new blade technology, we keep working to make it better.  The latest design update to the MicroTip edge and improved “polishing” do just that. TruPoint Orange not only has the ability to replace steel in high line screen applications, but now meters even better and eliminates start-up lines. What was once used mostly as a “fix-it” blade (to prevent UV ink spitting for example) has proven that it can compete for best “all-around” blade in the narrow web pressroom.

    Request a Free TruPoint Doctor Blade Sample
  • The World’s Most Innovative Doctor Blade Company

    The World’s Most Innovative Doctor Blade Company

     

    Flexo Concepts About Us

    Flexo Concepts® wants to be the world’s most innovative doctor blade company.

    How are we going to do it? By creating products, services and a brand experience that inspire.

    Products that inspire

    We start by crafting superior products and designs.

    Our salespeople “have their finger on the pulse” of the industry. They are well-versed in flexography and stay up on market trends. When they report back printers’ needs and challenges, our engineers get right to work.

    We partner closely with the world’s most advanced material suppliers and perfect designs in our state-of-the-art doctor blade innovation lab. New blade concepts are subjected to rigorous internal benchmark analysis and then sent out for advanced third-party testing with customers, industry associates, material labs and OEMs before being released to the market. Our premium, solution-based portfolio of innovative products ensures that customers have blades that meet their exact needs. Combinations of materials and tips present a large range of options so that blades can be customized for specific applications.

    But we don’t stop there. Our culture of “continuous improvement” compels us to keep moving forward. Whether it’s experimenting with an interesting new material or working tirelessly to perfect the geometry of a new tip, we never rest. The same goes for our manufacturing processes. We regularly invest in new (oftentimes custom) equipment so we can produce our blades swiftly and efficiently while maintaining high standards of quality.

    Services that inspire

    We make doing business with us easy for our customers so they can focus on their businesses. As trusted advisors, our highly-trained salespeople and customer experience reps help printers find the best solutions, even if it means sometimes recommending a competitor’s product. Wait, what?? It’s true.

    Providing support before, during and after each sale is important to us. Our company understands that printers need flexibility from their partners; we pride ourselves on providing quick responses, short lead times, inventory management programs and expedited shipments (even second-day or overnight guaranteed deliveries for those times that receiving blades ASAP is critical!).

     A brand experience that inspires

    Flexo Concepts wants to be the professor that’s helpful, collaborative and innovative, as well as the uncle who’s friendly, unconventional, guiding and cool. We promise to build meaningful relationships through exceptional experiences. We want our customers to feel comfortable working with us and trust us to have their best interests in mind. Having always been “different” as a niche manufacturer in the industry, we’re comfortable blazing our own trail – trying new things and coming up with unique innovations that set us apart from other doctor blade manufacturers.

    Flexo Concepts works hard to consistently deliver products, services and a brand experience that inspire. It’s not just our understanding of the market’s needs, highly-focused R&D efforts, ground-breaking blade technology, sales “consultants” and adaptive support services. It’s also a culture throughout our organization that makes us always try to be better. These are the things that will make us the world’s most innovative doctor blade company.

     

  • Hybrid Printing Technology Combines the Best of Both Worlds

    Hybrid Printing Technology Combines the Best of Both Worlds

    The TeaToaster.  An appliance that makes tea and toast?  How nice would it be to have the option of preparing your breakfast and morning beverage at the same time??!  (It doesn’t actually make toast, but a good idea, right?)

    There are also innovations in the printing industry that combine functionalities to make life a little easier for press operators.

    Today’s brand owners are more demanding than ever, looking for variable data and versioned graphics, short lead times, fast turnarounds and, of course, competitive prices.  These forces are driving industry innovation, and Mark Andy and Flexo Concepts® have led with hybrid technologies that bring flexibility and efficiency to the modern-day pressroom.

    Hybrid press technology

    In his 2016 article, Hybrid Presses – Combining digital and conventional printing offers converters the best of both worlds, Associate Editor of Label & Narrow Web Greg Hrinya compares hybrid press technology in the label printing market to that in other industries – a hybrid car which relies on multiple power sources or hybrid golf club that features the qualities of an iron and a fairway wood.  Similarly, new hybrid presses combine the benefits of digital with the power of flexo in one piece of equipment.  For printers, according to Hrinya, “The goal is to meet demand for large run flexo orders on the same press that is capable of handling a 500-label order from a local winery.”

    Mark Andy’s Digital Series – best of flexo and digital

    Mark Andy’s Digital Series, a 2017 technical innovation award winner, does just that.  Built upon the industry-leading Performance Series architecture, these presses leverage the advantages of digital technology with the proven capabilities of flexo.  The optimized hybrid platform is an efficiently designed, end-to-end workflow offering digital printing with in-line converting, decoration and finishing.  This happens all in a single pass and any size converter or job can be accommodated.  The machines run at printing speeds up to 240 fpm (73 mpm) and feature an intuitive user interface and consistent controls.  Operators can customize and enhance their production process to:

    • Increase throughput
    • Minimize cost of operation
    • Optimize process for short to medium runs
    • Maximize versatility
    • Create a superior user experience
    • Obtain reliability of proven P-Series platform

    Flexo Concepts’ TruPoint Orange® – best of steel and plastic

    Just as Mark Andy’s Digital Series brings together the best of digital and flexo in one press, Flexo Concepts’ TruPoint Orange combines the advantages of both steel and plastic materials in a single blade product.

    At one time, steel doctor blades were the only option capable of providing the fine, consistent contact area with the anilox roll necessary to produce high-end graphics.  However, printers had to accept the risks of using steel – dangerous injuries and anilox scoring.

    Although plastic is safer to handle and doesn’t produce metal fragments that can cause scoring, traditional plastic doctor blades must be engineered thicker to provide enough rigidity to meter the anilox.  This thicker contact area can’t meter high line screens effectively, so plastic blades were ruled out as an option for narrow web printers.

    That is, until the hybrid doctor blade came along.

    A product of Flexo Concepts’ Doctor Blade Innovation Lab, TruPoint Orange is constructed from a next generation polymer material and engineered with MicroTip® technology in a combination that is capable of achieving a fine, consistent contact area with the roll.  The blade can effectively produce high quality graphics as well as steel while retaining the benefits of traditional plastic – no dangerous cutting edge or metal fragments that will damage the anilox roll.  Orange doctor blades are able to:

    • Effectively meter line screens up to 2,000 lpi (785 L/cm)
    • Reduce pressroom injuries
    • Eliminate anilox scoring
    • Prevent UV ink spitting even at high press speeds
    • Handle specialty coating chemistries

    As the label and packaging market evolves, printers need products that can keep up.  With their hybrid technologies, Mark Andy and Flexo Concepts are at the forefront in developing innovative solutions that combine the best of known technology to help printers operate efficiently and competitively.  What the TeaToaster did for breakfast (in theory), the Digital Series and TruPoint Orange have done for printers:  combine two technologies in one to bring maximum success to the narrow web pressroom.

    Learn More about the Mark Andy Digital Series
    Request a Free TruPoint Doctor Blade Sample
  • The 5 Ws of TruPoint Doctor Blade Tips

    The 5 Ws of TruPoint Doctor Blade Tips

    This infographic is a beginner’s guide to Doctor Blade Tips, providing a brief overview of the 3 main tips offered with TruPoint doctor blades. Viewers will uncover the following 5 Ws of TruPoint doctor blade tips:

    1. Who – Who (which industry) predominantly uses this blade tip option?
    2. What – What does this doctor blade tip look like?
    3. Where – Where is this doctor blade found in a chambered ink system?
    4. When – When a certain anilox line screen is used, which doctor blade tip is the best option?
    5. Why – Why is this doctor blade tip used for all of the above?
  • New Polymer Doctor Blades with MicroTip Are Best for Applying Special Effects Coating

    New Polymer Doctor Blades with MicroTip Are Best for Applying Special Effects Coating

    Anyone who uses doctor blades for printing knows the range of options available today.  From the thickness of the material to the tip configuration, a doctor blade’s design has a direct impact on the job it will do.  While traditional tip options have ranged from straight to rounded to lamella, the new kid on the block, “MicroTip,” offers printers a smart choice when applying special effects coating.

    Special effects coatings are challenging

    More and more, packaging companies are using specialty coatings to differentiate their brands and create a tactile and visual experience for consumers.  However, special coatings such as glitter, grit, soft-touch, metallics and pearlescents present particular challenges for the printer.  These coatings have high viscosities and contain larger particles which make it difficult to accurately control the amount of coating

     

    being applied. (UV chemistries, common in specialty coating applications, have a viscosity of 5-7 times that of water and solvent-based formulas.)  This higher viscosity applies extra pressure to the metering blade, resulting in hydroplaning or “spitting” (especially at high line speeds), and increases coating consumption and waste.  In these cases, a customized blade solution is often necessary to control the lay-down of coating.

    New Polymer Doctor Blades with MicroTips can help

    Doctor blade manufacturers have found a way to make new polymer doctor blade materials that can overcome the limitations of steel in specialty coating applications.  By engineering a modified lamella tip, known as a “MicroTip”, on these materials, they have introduced a doctor blade product that offers the best of traditional plastic and steel.

    Why do they work?

    When used to apply special effects coating, steel blades are subject to accelerated blade wear from the coarse anilox engravings and corrosion from the harsh coating chemistries.  Today’s new polymer materials are compatible with all coating formulas and do what plastic blades are known to do best: last longer.

    MicroTip profilesThe blades can be engineered to a full range of size and profile combinations to optimize metering performance with the higher viscosity and large particulate formulas.  They range in thickness from .027”/.7mm to .050”/1.25mm to offer varying degrees of stiffness, rigidity and deflection.  These properties combined with the new MicroTip edge allow the blades to achieve a fine contact area with the anilox roll and deliver a fluid transfer of coating to the blanket with no spitting or slinging, even at high press speeds.  Add to this a range of MicroTips, (M10, M15 and M25) and these blades can be customized for a “perfect fit.”

    Doctor blade optimization for special effects coating

    The choice of blade thickness and tip will be determined by the anilox configuration, which is driven by the viscosity and solid load of the coating.  Typically, higher line screens and lower cell volumes will require a smaller MicroTip (an M10 or M15 for dull/satin/gloss coatings for example), but as line screens decline and volumes increase, a MicroTip providing a larger contact area (M15 or M25) will perform better.  By optimizing their next generation polymer doctor blades with the appropriate MicroTip, printers are able to achieve longer blade life in these applications than with steel.

     

    If you’re a printer struggling with special effects coating, consider switching to a next generation polymer doctor blade with a MicroTip.  A magical combination of advanced material and tip might be just what you need to achieve a perfect lay-down of coating with longer blade life to boot.

    Request a Free TruPoint Doctor Blade Sample
  • Consultative Selling: What It Is and Why It Works

    Listen and Learn with Consultative SellingToday, successful sellers act as trusted advisers to their buyers to help them find the best solutions.  By adopting a consultative selling strategy, salespeople create value in the selling process and benefit from better sales results, stronger customer bases and referrals.

    What is consultative selling?

    Consultative selling is defined as “personal selling in which a salesperson plays the role of a consultant” by www.businessdictionary.com.  It’s a sales method where the salesperson gains a solid understanding of the buyer’s challenges before recommending a solution.  An important distinction from other methods is that the main objective is helping the prospect find the right solution, not just getting him to “sign on the dotted line.”  The key elements of consultative selling fall into four categories:  research, relationship, resolution and reward.

    Research

    Today’s customer is much savvier than in the past and is doing his homework before buying.  The explosion of digital media has made it easy for people to access information online and share experiences with each other.  The buyer has already explored solutions, competitors, and prices and is well educated by the time a vendor comes calling.  The salesperson has to do his research, too, and can take advantage of “lead intelligence” to learn about his prospects and home in on the most qualified leads.

    Ask Who, What, Where, How, When and Why with Consultative SellingRelationship

    The consultative salesperson is an industry expert who “gets it” and wants to help.  He continues to learn more about his prospect’s challenges and obstacles by asking open-ended questions to uncover his real motivation for buying.  He builds trust by sharing his knowledge without asking for anything in return.

    Resolution

    If the seller’s products are determined to be a good fit for the buyer, the salesperson presents the customer-specific benefits of his products, figures out the next steps in the purchasing process and establishes a timeline for closing the sale.  If it is clear that he can’t meet the buyer’s needs, it is completely acceptable for him to recommend an alternative solution, even if it’s a competitor!

    Reward

    No matter the outcome, consultative selling results in a valuable experience for both sides.  The buyer is able to get advice from an industry expert who helps him understand his obstacles and navigate a solution.  By investing time to provide tailored, customized solutions, salespeople will enjoy better closing rates, higher value sales, increased customer retention and referrals.

    In the end, consultative selling is about helping prospects find solutions.  Salespeople who take the time to fully understand their buyers’ needs and challenges are in the best position to recommend the right solutions.  They will be rewarded with satisfied, loyal supporters.

  • How to Prevent Anilox Roll Scoring

    How to Prevent Anilox Roll Scoring

    Anilox roll scoring poses a challenge for many printers, evident when a shiny line encircles the roll, indicating a groove or “scoring” of the anilox roll. If you are a printer this means dark lines in your print – especially when printing solids. If you are applying a coating, it’s even more important to reduce scoring since most coatings are clear, and heavy coating lines are hard to detect.

    Once scored, an anilox roll can often be used selectively, working around the score lines. But at some point, the roll needs to be reengraved and depending on size and finish, comes with a significant cost.

    Scoring often arises from debris trapped between the doctor blade and the anilox roll. Common sources include particles from steel doctor blades, dried ink build-up, or coating particles in the fluid delivery system. To minimize or eliminate anilox scoring, consider the following practices:

    1. Maintain Good Housekeeping:  

    • Prevent dried ink or coating from accumulating on the anilox rolls and related components within the ink delivery system
    • Use filtration in the fluid delivery system to remove dried, hard debris during prolonged production runs.

    2. Implement Magnets: 

    • If using metal doctor blades, add high-strength magnets to the fluid delivery system to capture steel particulates.
    • Maintain minimal pressure between the doctor blade & anilox roll when using steel blades to avoid entrapment of dried particulates.

    3. Optimize Mechanical Setup:  

    • Ensure level and parallel alignment of the doctor blade chamber or single blade holder with the anilox roll.
    • Misalignment can lead to excessive pressure needed to engage the doctor blade, this will bend the blade and increase chances for particle entrapment.

    4. Use Plastic Containment Blades:  

    • Consider using a plastic (polyester) doctor blade for the containment blade on enclosed chambers.
    • This change cuts steel doctor blade usage (and particulate) in half, reducing the chances for scoring to occur.

    5. Switch to Polymer Doctor Blades: 

    • Explore transitioning to plastic or polymer doctor blades to eliminate steel from your system.
    • Polymer doctor blades have advanced dramatically in terms of stiffness, edge smoothness, blade life, and durability for long production runs and offer metering quality that meets or exceeds steel.

    In conclusion, anilox scoring is permanent damage commonly caused by debris between the doctor blade and the anilox roll, resulting in a defective product. Minimize anilox scoring and save unnecessary engraving costs by filtering inks or coatings and using magnets with metal doctor blades. Alternatively, you can switch to plastic doctor blades to potentially eliminate the problem altogether.

    Request a Free TruPoint Doctor Blade Sample
  • Kanban 101

    Kanban 101

    Kanban

    In today’s competitive marketplace, manufacturers are looking for ways to improve efficiency and wring costs out of the production process. By adopting lean manufacturing concepts, companies can eliminate waste and operate more efficiently. One way to do this is to implement kanban, a Japanese inventory scheduling system that promotes just-in-time production by delivering parts on an as-needed basis.

    In a kanban system, the production process is seen as a “chain,” where each “process” becomes the supplier for the next (“downstream”) process in the sequence and a customer to the previous (“upstream”) process. This approach extends all the way to a company’s external suppliers and customers. It optimizes production flow and minimizes inventory levels by directing the supply of parts and components to workers exactly when and where they need them.

    The advantages of using a kanban system include:

    • Lower inventory costs
    • Quicker response to changes in demand
    • Increased productivity and efficiency
    • Reduced waste

    Kanban Origins

    Kanban originated in Japan in the mid-20th century by Toyota looking to increase the efficiency of its factories. Its engineers were inspired by the inventory replenishment process used by supermarkets. They observed that customers purchase only the items and quantities they need, and store employees restock their shelves with only as much product as they expect to sell. This began an important distinction between a “push” system of manufacturing and a demand-based or “pull” system.

    Push vs. Pull Inventory Control Systems

    With traditional push manufacturing systems, companies produce what they think their customers will order and make items to stock in batches. While there are economies of scale, the downside is that inventory costs are high and companies can end up overproducing if sales forecasts are incorrect. Excess inventory ties up working capital, increases storage costs and exposes the company to the risk of parts becoming obsolete.

    A pull strategy, on the other hand, ties production directly to actual customer demand so there is little risk of overproduction and little excess inventory. Tasks in the production process are completed when requested by the next process down the line so parts or components are “pulled” into production only when needed. With a pull system of inventory management, a company may find itself slow to respond to a sudden increase in demand but very little capital is tied up in excess parts and storage.

    Kanban Cards

    kanban_cardIn order to facilitate its just-in-time manufacturing system, Toyota instituted a method using cards in its factories called “kanban” (a Japanese word combining “kan” for card and “ban” for signal). The cards, called “kanbans,” contain information about how to replenish each component used in production. By moving a kanban, an employee can signal when more parts are needed by an upstream process, prompting the production or purchase of these additional parts. Each kanban conveys all information required to replace the item such as the part name, number and description as well as the quantity to be produced and any other information about how the replenishment should take place. When delivering a kanban, the employee will write the date the order is initiated or “dropped” and when the parts are needed. The card is placed in a kanban rack to be retrieved along with the container by the appropriate person in the upstream process. Once replenished, the bin containing the new parts and kanban card are returned to their original location.

    Six Elements of Kanban

     

    The following principles are fundamental to a kanban system:

    1. Downstream processes always pull from upstream processes
    2. Upstream processes produce only when instructed
    3. Defects are never passed on to the next station
    4. Kanban cards are attached to part containers and no item is moved without a kanban
    5. Production is leveled throughout the system to prevent bottlenecks
    6. There is continuous fine-tuning of the kanbans in the production process

    The success of kanban as an inventory control system depends on its execution.  Adopting this system requires well-defined, documented procedures and training so employees are clear about every step, because a disruption in the process may lead to out-of-stocks and delays in filling customer orders. If executed properly, this is an excellent tool used to facilitate just-in-time manufacturing by eliminating waste and inefficiency from the production process.

     

  • What the Automakers Have Taught Us About Manufacturing Efficiency

    What the Automakers Have Taught Us About Manufacturing Efficiency

    production conceptual meter indicate maximum, isolated on white background

    We’ve learned a lot from the automakers when it comes to manufacturing efficiency. Our car-making forefathers took a long look at their production methods and figured out ways to increase value by making improvements in their processes. Today, printers, along with countless other industries, are realizing the benefits of implementing these concepts to improve their bottom lines.

    It started with Henry Ford. He revolutionized the production process by using interchangeable parts, standardization, and what he’s best known for, the assembly line. By streamlining production, he was able to mass produce the Model T and make cars available to middle class families across America for the first time in 1908.  By 1927, Ford had shipped 15 million cars, and the Model T came to symbolize a new method of manufacturing.

    In the mid-21st century, Toyota engineers expanded on Ford’s ideas to become more market-focused. Their inspiration came from a supermarket model of inventory management where stores restock their shelves as products are purchased by shoppers. Applied to manufacturing, the concept of just-in-time inventory replenishment recognizes that more efficient inventory management results when customers “pull” products through the supply chain.

    According to Toyota’s website, the objective of its “Toyota Production System,” or TPS, is to serve its customers and employees while aligning with the company’s business goals.  Central to the TPS are the principles of “Kaizen,” “Just in Time Manufacturing” and “Jidoka.”  These values attempt to maximize efficiency and quality by using methods that simplify production flow and speed up response times.  Production is driven by customer demand, and the way resources are allocated within the plant is known as “kanban.” All employees throughout the organization strive for continuous improvement in every aspect of the process.

    Modern lean manufacturing is derived from the TPS and strives to eliminate all excess from a manufacturing system by focusing only on the things that add value. By removing the causes of “muri”,” or overburdening of people or equipment, and “mura,” or unevenness, the overall “muda,” or waste in the manufacturing process is reduced.  (These terms were originally used in Japanese martial arts to protect the fighter by eliminating unnecessary movements!) In relation to manufacturing, seven deadly wastes (or mudas) have been identified:

    1. Transportation
    2. Inventory
    3. Motion
    4. Waiting
    5. Over-processing
    6. Over-production
    7. Defects

    These activities take up time, resources and space and add no value in the eyes of the customer.  The more these wastes can be minimized, the more dollars a manufacturer can wring out of the production process.

    For several years, press builder Gallus has seen lean manufacturing concepts in the print industry “as a means of ensuring perfect job processing without sacrificing profit margins.” Through its “Smart Production Concept” program, Gallus helps its customers evaluate their print quality, production sequences and production environment to find opportunities to improve pressroom efficiency. The press manufacturer compares lean manufacturing to Formula 1 racing, where “a single second more or less at a pit stop can make the difference between winning and losing.”

    We can learn a lot from our predecessors when it comes to many things, and manufacturing methods are no exception. Through the years, companies have continued to improve upon the basic concepts of production efficiency introduced by Henry Ford and Toyota.  Today, printers and businesses across many industry sectors strive to adopt the principles of lean manufacturing in order to achieve the ultimate goal of maximizing value to customers and optimizing profits.

     

  • Anilox Roll Cleaning is Essential to Effective Ink Delivery

    Anilox Roll Cleaning is Essential to Effective Ink Delivery

    Anilox Roll CleaningYou spend a lot of time selecting the correct anilox roll for a job. Careful consideration goes into line screen, cell geometry and cell volume in order to guarantee that a precise amount of ink or coating is delivered to the substrate. Aniox roll cleaning is essential to maintain this precision. If you neglect to clean your rolls on a regular basis, you will not get the most out of your anilox investment. Plugged cells will affect print quality and cause you frustration, waste and downtime. An anilox roll cleaning program consisting of daily, weekly and deep cleaning will preserve the integrity of the anilox engraving and ensure quality, press efficiency and longer anilox life.

    When a newly engraved anilox roll arrives from the manufacturer, volume is even across and around the surface of the roll. As the roll is used, however, a residual amount of ink or coating material is left behind in the cells after the transfer has taken place. The residue dries and creates build-up in the cells. Over time, these deposits decrease the capacity of the cells and reduce their ability to carry and release the volume of liquid for which they were designed. This residue also raises the surface tension, or dyne level, of the roll and increases the tendency of the coating to “cling” to the surface. When this occurs, the roll will not release the proper volume or ink or coating to the plate.

    Benefits of regular anilox roll cleaning:

    • The repeated transfer of a precise volume of ink or coating
    • Consistent coverage
    • Reduced labor and less downtime
    • Fewer job rejections and waste
    • Longer anilox life and lower re-working costs

    Flexo Concepts recommends a 3-step anilox roll cleaning program:

    1. Daily wiping to prevent ink or coating build-up

    Applying a liquid cleaning agent by hand and wiping down the roll with a clean, lint-free cloth on a daily basis is the simplest and most effective way to keep ink and coating from drying and building up in the cells. As a basic rule of thumb, the best time to clean a roll is as soon as it is removed from the press. The longer inks, resins, adhesives, etc. have been allowed to sit in the engraving, the harder these materials are to remove. To maximize cleaning performance, choose a cleaner specifically formulated to remove water-based, UV or solvent-based chemistries based on your application.

    2. Weekly scrubbing with a paste-like cleaner and an anilox cleaning brush

    Anilox Cleaning BrushManually scrubbing the roll once or twice a week with a brush and a paste or cream chemical cleaner will mechanically loosen and remove any ink or coating residue that remain in cells despite daily cleaning. The cleaner is applied to the roll, vigorously scrubbed in a circular motion with an anilox cleaning brush and flushed with water while the roll remains in the press. It is important to remember that stainless steel brushes are suitable only for ceramic anilox surfaces and brass bristles should be used for chrome surfaces to prevent damage to the engraving.

    3. Monthly deep cleaning to remove tough ink or coating deposits

    Over time a residual amount of ink or coating material is left behind in the cells and the roll requires a deep cleaning to remove these tough deposits. The most common methods of deep cleaning are chemical wash and ultrasonic. With these methods, the roll is removed from the press and placed into a chemical bath where it soaks in a powerful cleaning solution before being subjected to a high pressure rinse or ultrasonic vibrations to loosen and dissolve the deposits. These methods vary in cleaning effectiveness, risk of damage to the roll, and water and chemical consumption.

    There are also particle-blasting methods of mechanically removing the dried cell contents. These methods are especially effective for removing chemistries that may be resistant to chemical cleaners. Soda blasting technology uses small granules of sodium carbonate to go in and “pick out” the ink or coating. The roll is then rinsed with water and wiped to remove any remaining soda residue. A more eco-friendly method to deep cleaning anilox rolls that uses no water or chemicals is the MicroClean™ System: an off-press, completely dry media cleaning machine that uses recyclable plastic media pellets. The system gently but thoroughly removes all types of dried inks and coatings, virtually restoring cell volume to full capacity with each cleaning.

    Laser cleaning is another anilox deep-cleaning method that’s growing in popularity and effective at removing chemical-resistant ink and coating deposits. The technology uses a pulsed laser beam to heat and evaporate the tough residue in the anilox cells. This method requires no consumable and produces no waste stream, although the capital investment is high.

    Like on other parts of the press, a maintenance program for anilox rolls keeps the ink delivery system running at its peak. Regular anilox roll cleaning will prevent anilox cells from plugging with residue and stop build-up before it dries. Maintaining anilox rolls through a regular cleaning program can pay off tremendously in terms of maximizing print quality, press efficiency and cost control. Click here for more information on our anilox roll cleaning brushes

  • 5 Reasons to Switch to Polyester Containment Blades

    5 Reasons to Switch to Polyester Containment Blades

    TruPoint Polyester Containment Blade for flexo printing

    Switching to polyester containment blades from steel can offer several benefits for printers. Here are the top 5 reasons to make the switch: 

     1. Elimination of Back Doctoring: 

    Some printers encounter back-doctoring issues at higher press speeds when using steel containment blades. Steel blades are too rigid to allow back-doctored ink to flow back into the chamber, leading to ink buildup and negatively affecting press uptime. Polyester blades, while effectively containing ink, are flexible enough to enable back-doctored ink to return into the chamber, preventing back-doctoring and maintaining print quality. 

    2. Cost Savings: 

    Polyester containment blades are significantly more cost-effective than steel blades. The price per inch for polyester blades is typically one-third to one-half that of steel, making them a cost-efficient choice for printers. 

    3. Enhanced Safety: 

    Replacing the steel containment blade in a chamber with polyester reduces the risk of doctor blade injuries by 50%. Polyester blades are safer to handle, as they don’t pose the same cutting hazard as steel blades during installation and removal from the press. 

    4. Prevention of Anilox Damage: 

    Polyester containment blades are gentle on anilox rolls. They won’t score or damage the rolls, and the material contains no sharp fragments that could break off and harm the engraving on the roll. This non-abrasive quality helps extend the life of anilox rolls, saving on the expense of re-engraving or replacement. 

    5. Reduced Environmental Impact: 

    Polyester containment blades emit a smaller amount of carbon dioxide during production compared to steel blades. Using polyester blades can help printers meet environmental requirements for reducing their carbon footprint, contributing to an eco-friendly printing process. Switching to polyester containment blades reduces downtime and provides a lower per-unit cost while delivering safety benefits, reducing back-doctoring, and lowering the environmental impact of the printing process. It’s a small change that can make a significant difference in efficiency and overall performance in the pressroom. 

    Polyester containment blade coil

    Request a Free Sample of TruPoint Polyester
  • New Doctor Blade Technology Is Worth a Look

    new doctor blade technology innovationAs a consumables manufacturer introducing new doctor blade technology to a mature industry, we’re constantly hearing, “But I’ve done it this way forever.” Press men are busy and don’t’ have time to waste trying new products when their current ones are working fine. But changing times call for an ongoing evaluation of your print process to find ways to improve. Today’s printers are smart to run controlled tests of new products to make sure they are maximizing efficiency and profitability and “keeping up with the times.”

    Anilox Roll Evolution

    Chrome anilox rolls

    Let’s use anilox rolls as an analogy. When chrome-plated anilox rolls came on the market almost 80 years ago, they were an improvement over the previous (and crude) methods of ink transfer. Steel rolls were covered with a chrome layer and mechanically engraved using a knurling tool. The dimples or “cells” filled with a precise volume of ink and carried them to the plate. This gave the printer more control over the ink application process and better print quality.

    As the industry continued to evolve, however, the limitations of chrome-plated rolls became apparent. The chrome surfaces wore down quickly from the friction between the roll and the doctor blade. Due to their shape, the cells quickly lost volume capacity and print densities declined. Also, the maximum line screens that could be achieved with the knurling tool were 500 lpi which was only enough for basic and moderate graphics reproduction. As demands for higher quality printing increased, and there were advancements in presses, plates and inks, so did the need for better anilox roll technology.

    Ceramic-coated rolls

    To keep pace with the industry, anilox roll manufacturers began applying a ceramic coating to their rolls using a plasma spray device. These new surfaces had hardness of over 1400 Vickers compared to 850-900 Vickers for the chrome-plated surfaces. As the hardness of the roll determines its strength and durability, the new surfaces had better resistance to wear from the doctor blade. These rolls were too hard to engrave mechanically and lasers started being used to etch the rolls. The lasers produced a consistent engraving with cleaner cells and more distinct cell walls. Higher line screens could be achieved to expand a printer’s graphics capabilities. The ceramic surfaces not only lasted longer but the cells were also less sensitive to volume changes from wear. Printers gained more control over print quality and were now able to achieve target ink densities with thinner ink films.

    New doctor blade technology

    Like presses and other press components, doctor blades have evolved to adapt to the market. Blade manufacturers are continually experimenting with new materials and edge designs and introducing new doctor blade technology to keep up with their customers’ needs.

    Steel

    Today’s steel blade users have a choice of carbon, stainless, long life, coated and ceramic blades to fit their precise applications. Until now, steel was considered the only material capable of achieving a fine contact area with the roll and producing an effective wipe on high line screen engravings. Printers had to accept the downside of frequent blade changes, injuries and anilox roll scoring because there were no alternatives.

    Plastics

    Plastics, on the other hand, have always been known for their blade life and safety. The material has to be thicker to provide rigidity and these blades were suitable only for producing low-moderate graphics. The upside is that they don’t have to be changed as often, and the long and steady wear period allows for consistent ink film thickness for the duration of the print job. The material is also safer to handle and won’t score anilox rolls. Plastic doctor blade choices include a variety of acetals, UHMWs, and polyesters.

    Next generation doctor blades

    Flexo Concepts® recently introduced a new blade that acts as a hybrid between steel and plastic. A combination of an advanced polymer material and an innovative tip design called “MicroTip™” allows the blade to perform in high line screen applications where previous non-metallic materials were not an option. Printers using these advanced polymer products get blades that can produce the graphics quality of steel while remaining safe to operators and anilox rolls. The blade is now successfully being used in a range of narrow web and wide web applications.

    As with anilox rolls and other press components, new doctor blade technology has gone hand in hand with the evolution of the flexo printing industry. The new polymer MicroTip blade is an example of a product that, once again, improves upon “what you were using before.” Why not try it?

    Request a Free TruPoint Doctor Blade Sample
  • The Right End Seals Will Prevent Leaks in Your Doctor Blade Chamber System

    The Right End Seals Will Prevent Leaks in Your Doctor Blade Chamber System

    End SealsIn an enclosed doctor blade chamber  system, the job of the end seals is to keep the coating or ink from leaking out of the ends of the chamber.  Selecting the right end seals for your application is critical to achieve proper doctor blade seating and prevent leaks.  If used correctly, these inexpensive consumables will ensure graphic quality and save a printer thousands of dollars in waste, downtime and replacement of other press parts due to premature wear.

    Problems That Result from Failed End Seals

    • Chamber leaks and mess
    • Poor graphic quality and ink/coating waste
    • Excessive doctor blade wear
    • Premature anilox roller wear and scoring
    • Press downtime

    Why Chamber Leaks Occur

    While there are other causes of chamber leaks, failed end seals are responsible for the lion’s share.  It is important to use an end seal material that is compatible with the type of ink or coating being used, the length of the run and the press speed.  Good seal design for a proper fit is also critical to ensure that end seals contain the liquid within the confines of the chamber.  Incorrect end seal size and shape will leave gaps for fluid to leak out of the ends.  If the seals aren’t sufficiently lubricated, the increased friction against the anilox roller will cause buildup and leaking.  Enlist the help of your end seal supplier to work through these issues and make sure that you are using the correct end seals for your application.

    When a chamber is leaking, a press operator will often try to fix the problem by increasing the load pressure instead of looking for the cause of the leak.  End seal leaks should never be resolved by increasing chamber pressure.  The additional pressure increases friction between the doctor blade and the anilox roll and causes both to wear prematurely.  Paying a little extra attention when installing doctor blades and end seals can prevent many leaks from occurring in the first place.  After installing new end seals, a press operator should evaluate the chamber and confirm that there is a snug end seal fit with no gaps or distortion.  The doctor blade should have some upward pressure to form an adequate seal, but not so much that it requires extra loading pressure to make contact with the anilox roller in the middle of the blade.

    End Seal Materials for Chamber  Systems

    There are various end seal materials which range in abrasion resistance, durability and solvent resistance.  Again, your end seal supplier is a good resource to help you determine the best material for your application:

      1. Foam seals are the most common and the least expensive type of end seals.  This material generally does not perform as well as other materials and may not be a good choice for long runs, higher press speeds and certain fluid chemistries.  There can also be a lot of variation in the density of the material which can range from super firm to more malleable.

     

      1. Neoprene or rubber seals offer longer life compared to foam seals.  They are compatible with aqueous and UV coatings & inks so they don’t have to be changed out between jobs.  However, these seals do not seat well due to the coefficient of friction between the material and the anilox roller surface.

     

    1. Pre-soaked felt end seals are a superior solution for resolving leaks.  These end seals are oversized for a snug fit and pre-soaked in petroleum to reduce friction and prevent  buildup.  Felt end seals are compatible with all ink and coating types, provide a tighter seal and typically last longer than rubber and foam seals.  Keeping felt seals lubricated with seal grease is key to their superior performance and longer life.  Felt end seals tend to dry out after the anilox  system is flushed with detergents and water.  Applying seal grease to the radius portion of the seals after flushing the system will ensure a tight fit and extend the life of the seals by reducing friction.

    Choosing the right seal material and design for your application and replacing end seals when necessary will help ensure that they do their job of keeping inks and coatings from leaking out of the chamber.  Better yet, the right seals will allow for proper doctor blade seating and a predictable and even transfer of fluid from the anilox roller to the blanket.  Despite their small cost, end seals have the power to save thousands of dollars in waste and downtime.