Anilox Roll Scoring

 

Read "UV Ink Spitting is a Dirty Habit"

The anilox roll has been referred to as the heart of the printing press.  It carries the huge responsibility of delivering the precise amount of ink required to create an image exactly according to the customer’s specifications.  That’s a big job! If anilox rolls are taken care of, they are your workhorses:  consistently and repeatedly executing the desired image, job after job.  They can last for years and provide a great return on your investment.

So the “health” of your anilox rolls is extremely important.  There are several steps you can take to maintain their integrity.  First, follow a good cleaning regimen to prevent ink from drying in cells.  Plugged anilox cells can’t carry the volume of ink for which they were designed.  (Read “Anilox Roll Cleaning is Essential to Effective Ink Delivery”)  Second, make sure to handle the rolls properly to avoid damaging the ceramic coating.  Once the edges become chipped, ink and solvent can leach under the surface and ruin the roll.

Protect your rolls from scoring

A third way to get the most out of your anilox investment is to protect your rolls from scoring.  Anilox scoring occurs when a piece of metal becomes trapped against the doctor blade as the roll rotates.  The fragment causes a deep scratch, or “score line,” destroying the cells in a stripe around the circumference of the roll.  Not only is this expensive in terms of repairing or replacing the roll, but also costs a lot in substrate and ink waste, press downtime and unhappy customers.

Photo courtesy of Harper

If the roll’s surface becomes scored, the defects will show in the printed image.  Sometimes a score line is a deep gouge across several cell widths.  The band of damaged cells results in a dark streak in the print as more ink is delivered in this area.  More often, the metal fragment wears down the walls of the cells, resulting in a “polishing” score line.  In this case, the affected part of the anilox roll is not able to carry as much ink as the surrounding cells, and the corresponding area of print appears as a light streak.

Photo courtesy of Harper

Causes of anilox scoring

While there are many causes of anilox scoring, the most common ones relate to the use of steel doctor blades.  Large pieces of the blade can break away as it wears or if the blade is installed with too much pressure.  An excessive amount of pressure on the tip will cause it to bend back and eventually fracture off.  Excessive pressure can occur when an operator neglects to adjust the blade holder setting when replacing a worn blade with a new (wider) one.  Sometimes an operator will intentionally over-pressure the blade to compensate for other problems such as chamber leaks, chamber misalignment or warped or rippled blades.

Some ways to prevent anilox roll scoring are:

  • Ensure proper chamber alignment and blade installation
  • Use non-metallic doctor blades
  • Do not over-pressure blades
  • Clean anilox rolls regularly
  • Do not run the press dry or let ink dry in cells
  • Filter ink to remove metal fragments

Once a roll is scored, it must be reconditioned or replaced at the cost of hundreds to thousands of dollars.  Not to mention lost substrate, ink waste, press downtime and being without the roll while it’s being reconditioned or replaced.  Treat your anilox rolls like the important parts of the press that they are; in addition to proper cleaning and handling, preventing score lines will go a long way to ensure that you get the most out of your anilox investment!

Versioning and Variable Data in Flexible Packaging

versioning in flexible packagingAccording to Smithers Pira in its “Future of Global Flexible Packaging to 2020” report, “Flexible packaging has been one of the fastest growing packaging sectors over the past 10 years, thanks to increased consumer focus on convenience and sustainability, and this rapid development will continue to accelerate.”  This growth, however, will depend on the industry’s ability to cope with market trends driving shorter run lengths.

Versioning and Variable Data Printing

Two of these trends driving shorter run lengths are versioning and variable data.  Versioning is used to produce packages for different variations of a product (such as a line of flavors) while maintaining brand continuity.  For the printer, a large print job is segmented into smaller lots that are customized based on each “version” of the product.

Variable data printing is mainly used in flexible packaging applications for product authentication and logistics in the distribution chain.  Companies can add a unique identifying code to each package, allowing individual products to be “tracked and traced” through the supply chain.  Bar codes and RFID codes are used to facilitate inventory and prevent counterfeiting.

Both versioning and variable data lend themselves well to digital printing, a process that can easily and cost-effectively produce small lots.  In flexible packaging, however, long runs are required to achieve the economies necessary to be profitable.  How can a flexible packaging printer be competitive?

1. Take Advantage of New Wide Web Technologies

As run lengths become shorter, changeover speeds become more critical than press speeds.  The wide web industry has responded with equipment technologies that make faster set-ups possible such as gearless presses, anilox sleeves and automatic impression settings.  Some printers are converting to fixed ink sets, such as extended gamut, to minimize the number of wash-ups or eliminating manual cleaning altogether with automatic wash cycles.

2. Add Mid-Web Equipment

A number of large format printers are adopting mid-web press technology for economical production of medium-length jobs.  By comparison, these presses not only cost less but are built for faster changeovers, lower tooling costs, and less consumption of ink, plates and other consumables.  They require fewer operators to run and deliver easier reproduction of high-quality graphics.

3. Incorporate Digital

Finally, for some work, digital just makes more sense.  Digital printing’s sweet spot is its ability to produce short runs economically.  By adding this complementary technology, printers can take advantage of the flexibility offered by having both capabilities under one roof.  Like narrow web, using digital for short run work also frees up wide-web presses for big jobs.

The flexible packaging industry is experiencing a reduction in run lengths driven by shifts in the way brand owners do business.  Printers have to find ways to adapt to such changes as versioning and variable information printing by creating new technology and processes.  By improving equipment to shorten changeover times and adopting additional printing capabilities, wide web printers will be able to claim its share of future growth in the package printing market.

Consultative Selling: What It Is and Why It Works

Listen and Learn with Consultative SellingToday, successful sellers act as trusted advisers to their buyers to help them find the best solutions.  By adopting a consultative selling strategy, salespeople create value in the selling process and benefit from better sales results, stronger customer bases and referrals.

What is consultative selling?

Consultative selling is defined as “personal selling in which a salesperson plays the role of a consultant” by www.businessdictionary.com.  It’s a sales method where the salesperson gains a solid understanding of the buyer’s challenges before recommending a solution.  An important distinction from other methods is that the main objective is helping the prospect find the right solution, not just getting him to “sign on the dotted line.”  The key elements of consultative selling fall into four categories:  research, relationship, resolution and reward.

Research

Today’s customer is much savvier than in the past and is doing his homework before buying.  The explosion of digital media has made it easy for people to access information online and share experiences with each other.  The buyer has already explored solutions, competitors, and prices and is well educated by the time a vendor comes calling.  The salesperson has to do his research, too, and can take advantage of “lead intelligence” to learn about his prospects and hone in on the most qualified leads.

Ask Who, What, Where, How, When and Why with Consultative SellingRelationship

The consultative salesperson is an industry expert who “gets it” and wants to help.  He continues to learn more about his prospect’s challenges and obstacles by asking open-ended questions to uncover his real motivation for buying.  He builds trust by sharing his knowledge without asking for anything in return.

Resolution

If the seller’s products are determined to be a good fit for the buyer, the salesperson presents the customer-specific benefits of his products, figures out the next steps in the purchasing process and establishes a timeline for closing the sale.  If it is clear that he can’t meet the buyer’s needs, it is completely acceptable for him to recommend an alternative solution, even if it’s a competitor!

Reward

No matter the outcome, consultative selling results in a valuable experience for both sides.  The buyer is able to get advice from an industry expert who helps him understand his obstacles and navigate a solution.  By investing time to provide tailored, customized solutions, salespeople will enjoy better closing rates, higher value sales, increased customer retention and referrals.

In the end, consultative selling is about helping prospects find solutions.  Salespeople who take the time to fully understand their buyers’ needs and challenges are in the best position to recommend the right solutions.  They will be rewarded with satisfied, loyal supporters.

Kanban 101

 

Kanban

In today’s competitive marketplace, manufacturers are looking for ways to improve efficiency and wring costs out of the production process. By adopting lean manufacturing concepts, companies can eliminate waste and operate more efficiently. One way to do this is to implement kanban, a Japanese inventory scheduling system that promotes just-in-time production by delivering parts on an as-needed basis.

In a kanban system, the production process is seen as a “chain,” where each “process” becomes the supplier for the next (“downstream”) process in the sequence and a customer to the previous (“upstream”) process. This approach extends all the way to a company’s external suppliers and customers. It optimizes production flow and minimizes inventory levels by directing the supply of parts and components to workers exactly when and where they need them.

The advantages of using a kanban system include:

  • Lower inventory costs
  • Quicker response to changes in demand
  • Increased productivity and efficiency
  • Reduced waste

Kanban Origins

Kanban originated in Japan in the mid-20th century by Toyota looking to increase the efficiency of its factories. Its engineers were inspired by the inventory replenishment process used by supermarkets. They observed that customers purchase only the items and quantities they need, and store employees restock their shelves with only as much product as they expect to sell. This began an important distinction between a “push” system of manufacturing and a demand-based or “pull” system.

 Push vs. Pull Inventory Control Systems

With traditional push manufacturing systems, companies produce what they think their customers will order and make items to stock in batches. While there are economies of scale, the downside is that inventory costs are high and companies can end up overproducing if sales forecasts are incorrect. Excess inventory ties up working capital, increases storage costs and exposes the company to the risk of parts becoming obsolete.

A pull strategy, on the other hand, ties production directly to actual customer demand so there is little risk of overproduction and little excess inventory. Tasks in the production process are completed when requested by the next process down the line so parts or components are “pulled” into production only when needed. With a pull system of inventory management, a company may find itself slow to respond to a sudden increase in demand but very little capital is tied up in excess parts and storage.

Kanban Cards

kanban_cardIn order to facilitate its just-in-time manufacturing system, Toyota instituted a method using cards in its factories called “kanban” (a Japanese word combining “kan” for card and “ban” for signal). The cards, called “kanbans,” contain information about how to replenish each component used in production. By moving a kanban, an employee can signal when more parts are needed by an upstream process, prompting the production or purchase of these additional parts. Each kanban conveys all information required to replace the item such as the part name, number and description as well as the quantity to be produced and any other information about how the replenishment should take place. When delivering a kanban, the employee will write the date the order is initiated or “dropped” and when the parts are needed. The card is placed in a kanban rack to be retrieved along with the container by the appropriate person in the upstream process. Once replenished, the bin containing the new parts and kanban card are returned to their original location.

Six Elements of Kanban

The following principles are fundamental to a kanban system:

  1. Downstream processes always pull from upstream processes
  2. Upstream processes produce only when instructed
  3. Defects are never passed on to the next station
  4. Kanban cards are attached to part containers and no item is moved without a kanban
  5. Production is leveled throughout the system to prevent bottlenecks
  6. There is continuous fine-tuning of the kanbans in the production process

The success of kanban as an inventory control system depends on its execution.  Adopting this system requires well-defined, documented procedures and training so employees are clear about every step, because a disruption in the process may lead to out-of-stocks and delays in filling customer orders. If executed properly, this is an excellent tool used to facilitate just-in-time manufacturing by eliminating waste and inefficiency from the production process.

What the Automakers Have Taught Us About Manufacturing Efficiency

production conceptual meter indicate maximum, isolated on white background

We’ve learned a lot from the automakers when it comes to manufacturing efficiency. Our car-making forefathers took a long look at their production methods and figured out ways to increase value by making improvements in their processes. Today, printers, along with countless other industries, are realizing the benefits of implementing these concepts to improve their bottom lines.

It started with Henry Ford. He revolutionized the production process by using interchangeable parts, standardization, and what he’s best known for, the assembly line. By streamlining production, he was able to mass produce the Model T and make cars available to middle class families across America for the first time in 1908.  By 1927, Ford had shipped 15 million cars, and the Model T came to symbolize a new method of manufacturing.

In the mid-21st century, Toyota engineers expanded on Ford’s ideas to become more market-focused. Their inspiration came from a supermarket model of inventory management where stores restock their shelves as products are purchased by shoppers. Applied to manufacturing, the concept of just-in-time inventory replenishment recognizes that more efficient inventory management results when customers “pull” products through the supply chain.

According to Toyota’s website, the objective of its “Toyota Production System,” or TPS, is to serve its customers and employees while aligning with the company’s business goals.  Central to the TPS are the principles of “Kaizen,” “Just in Time Manufacturing” and “Jidoka.”  These values attempt to maximize efficiency and quality by using methods that simplify production flow and speed up response times.  Production is driven by customer demand, and the way resources are allocated within the plant is known as “kanban.” (See Kanban 101 blog post) All employees throughout the organization strive for continuous improvement in every aspect of the process.

Modern lean manufacturing is derived from the TPS and strives to eliminate all excess from a manufacturing system by focusing only on the things that add value. By removing the causes of “muri”,” or overburdening of people or equipment, and “mura,” or unevenness, the overall “muda,” or waste in the manufacturing process is reduced.  (These terms were originally used in Japanese martial arts to protect the fighter by eliminating unnecessary movements!) In relation to manufacturing, seven deadly wastes (or mudas) have been identified:

  1. Transportation
  2. Inventory
  3. Motion
  4. Waiting
  5. Over-processing
  6. Over-production
  7. Defects

These activities take up time, resources and space and add no value in the eyes of the customer.  The more these wastes can be minimized, the more dollars a manufacturer can wring out of the production process.

For several years, press builder Gallus has seen lean manufacturing concepts in the print industry “as a means of ensuring perfect job processing without sacrificing profit margins.” Through its “Smart Production Concept” program, Gallus helps its customers evaluate their print quality, production sequences and production environment to find opportunities to improve pressroom efficiency. The press manufacturer compares lean manufacturing to Formula 1 racing, where “a single second more or less at a pit stop can make the difference between winning and losing.” Click here to read how this company’s efforts are impacting the narrow web print industry.

We can learn a lot from our predecessors when it comes to many things, and manufacturing methods are no exception. Through the years, companies have continued to improve upon the basic concepts of production efficiency introduced by Henry Ford and Toyota.  Today, printers and businesses across many industry sectors strive to adopt the principles of lean manufacturing in order to achieve the ultimate goal of maximizing value to customers and optimizing profits.

 

New Polymer Doctor Blades are Safe Substitutes for Steel in Flexible Packaging Applications

Blade_Safety_Accident_Free_Days_215x275If you are using steel doctor blades, you are probably well aware of the risk of serious cuts from handling the blades. Pressroom injuries can be expensive in terms of morale and accident-related expenses. Today’s next generation polymer blades combine the best of traditional plastic and steel blades and provide safe substitutes for steel in flexible packaging applications.

As steel doctor blades wear, their tips become honed through contact with the anilox roll, leaving razor-sharp edges. Press operators need to be extremely careful and wear protective gloves when removing the worn blades from the press to avoid injuries.

Until recently, steel was the only material capable of producing the high quality print required in flexible packaging applications so printers had no choice but to accept these risks. While plastic blades were safer, they were not able to achieve a fine enough contact area with the high line screen rolls.

Today’s next generation polymer blades act as a hybrid between steel and plastic and offer a safe alternative to steel. The combination of an advanced polymer material and an innovative “MicroTip®” design allows these blades to perform in highly demanding applications where previously steel was the only option. Due to their material composition, the new polymer blades are safe to handle even when worn. Converting to these blades will reduce lost-time accidents and can save a printer a lot of money in terms of workman’s compensation insurance rates, medical bills, labor replacement expenses and press downtime.

When it comes to the pressroom, safety is everyone’s concern. Flexible packaging printers no longer have to accept the danger that comes with using steel blades to get the print quality their customers demand. To greatly reduce the risk of injury and associated costs, try substituting next generation polymer blades for steel.

Request a doctor blade sample today!

Anilox Roll Cleaning is Essential to Effective Ink Delivery

Anilox Roll CleaningYou spend a lot of time selecting the correct anilox roll for a job. Careful consideration goes into line screen, cell geometry and cell volume in order to guarantee that a precise amount of ink or coating is delivered to the substrate. Aniox roll cleaning is essential to maintain this precision. If you neglect to clean your rolls on a regular basis, you will not get the most out of your anilox investment. Plugged cells will affect print quality and cause you frustration, waste and downtime. An anilox cleaning program consisting of daily, weekly and deep cleaning will preserve the integrity of the anilox engraving and ensure quality, press efficiency and longer anilox life.

When a newly engraved anilox roll arrives from the manufacturer, volume is even across and around the surface of the roll. As the roll is used, however, a residual amount of ink or coating material is left behind in the cells after the transfer has taken place. The residue dries and creates build-up in the cells.  Over time, these deposits decrease the capacity of the cells and reduce their ability to carry and release the volume of ink or coating for which they were designed. This residue also raises the surface tension, or dyne level, of the roll and increases the tendency of the coating to “cling” to the surface. When this occurs, the roll will not release the proper volume or ink or coating to the plate.

Benefits of regular anilox roll cleaning:

  • The repeated transfer of a precise volume of ink or coating
  • Consistent coverage
  • Reduced labor and less downtime
  • Fewer job rejections and waste
  • Longer anilox life and lower re-working costs

Flexo Concepts recommends a 3-step anilox roll cleaning program:

  1. Daily wiping to prevent ink or coating build-up

Applying a liquid cleaning agent by hand and wiping down the roll with a clean, lint-free cloth on a daily basis is the simplest and most effective way to keep ink and coating from drying and building up in the cells. As a basic rule of thumb, the best time to clean a roll is as soon as it is removed from the press. The longer inks, resins, adhesives, etc. have been allowed to sit in the engraving, the harder these materials are to remove. To maximize cleaning performance, choose a cleaner specifically formulated to remove water-based, UV or solvent-based chemistries based on your application.

  1. Weekly scrubbing with a paste-like cleaner and an anilox cleaning brush

Anilox Cleaning BrushManually scrubbing the roll once or twice a week with a brush and a paste or cream chemical cleaner will mechanically loosen and remove any ink or coating residue that remain in cells despite daily cleaning. The cleaner is applied to the roll, vigorously scrubbed in a circular motion with an anilox cleaning brush and flushed with water while the roll remains in the press. It is important to remember that stainless steel brushes are suitable only for ceramic anilox surfaces and brass bristles should be used for chrome surfaces to prevent damage to the engraving.

  1. Monthly deep cleaning to remove tough ink or coating deposits

Over time a residual amount of ink or coating material is left behind in the cells and the roll requires a deep cleaning to remove these tough deposits. The most common methods of deep cleaning are chemical wash and ultrasonic. The roll is removed from the press and placed into a chemical bath where it soaks in a powerful cleaning solution before being subjected to a high pressure rinse or ultrasonic vibrations to loosen and dissolve the deposits. These methods vary in cleaning effectiveness, risk of damage to the roll, and water and chemical consumption.

Like on other parts of the press, a maintenance program for anilox rolls keeps the ink delivery system running at its peak. Regular anilox roll cleaning will prevent anilox cells from plugging with ink and coating residue and stop build-up before it dries. Maintaining anilox rolls through a regular cleaning program can pay off tremendously in terms of maximizing print quality, press efficiency and cost control.

Click here for more information on our anilox cleaning brushes

Polyester Containment Blades Win over Steel

Polyester Containment Blade

Polyester Containment Blade

For such a seemingly insignificant part of the press, the containment blade’s job is an important one.  After all, it is a fundamental component of the doctor blade chamber.  By forming an enclosed system, the containment blade plays a key role in allowing the printer to maintain ink viscosity, minimize skimming, lower ink consumption and simplify cleanup.

In wide web applications, choosing polyester containment blades over steel is a smart way to save money, improve safety and reduce your environmental impact.  Unlike the metering blade, which has a direct impact on print quality, the containment blade only has to contain ink in the chamber.  This gives a printer more options to choose from with regard to blade materials.  Learn why polyester is a superior choice over steel.

Top 5 reasons to switch to polyester containment blades:

  1. Trail doctoring – Some printers experience trail doctoring at higher press speeds when using steel containment blades. Steel blades are too stiff to allow back-doctored ink to pass underneath the blade and back into the chamber.  Ink builds up on the back side of the blade, pools at the end of the chamber and eventually slings onto the press and web.  This situation not only creates a mess but also affects print quality.  Printers can eliminate trail doctoring by using polyester containment blades.  This material is equally effective at containing ink in the chamber but thin and flexible enough to let back-doctored ink return to the chamber.
  2. Cost – Polyester containment blades cost substantially less than steel blades. The price per inch for polyester typically ranges from one-third to one-half that of steel.
  3. Safety – By replacing one of the steel doctor blades in a chamber with polyester, you can reduce your risk of doctor blade injuries by 50%. Unlike steel, polyester blades are safer to handle than steel and won’t cut press operators when they are installing and removing them from the press.
  4. Environmental impact – During production, polyester blades emit a small percentage of carbon dioxide compared to steel blades. Using polyester containment blades can help printers meet requirements for reducing their carbon footprint.
  5. Anilox damage – Polyester containment blades will not score or damage anilox rolls. The material is soft and contains no sharp fragments which can break off, become lodged against the roll and destroy the engraving as the roll turns.  The material is non-abrasive and won’t cause excessive wear on the roll.  Replacing or re-engraving anilox rolls is expensive, so extending their life can be a huge cost savings.

Printers are always looking for ways to improve efficiency and save money.  Why not choose a containment blade that not only costs less but also has additional pressroom benefits?  Polyester containment blades offer a less expensive and safer alternative to steel that also reduces trail doctoring and environmental impact.  It’s amazing how such a small change can make such a big difference!

Request a Polyester containment blade sample